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Thermal relaxation of supercritical fluids by equilibrium molecular dynamics
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Two-dimensional molecular dynamics (MD) simulations are performed in the NVT ensemble (con-
stant number of particles, volume, and temperature) with a truncated and shifted Lennard-Jones poten-
tial in order to model highly compressible fluids near the critical point. The thermodynamic and trans-
port properties are computed for three different supercritical states (same critical density and different
temperatures) and one “normal” fluid with a different density. The static properties are obtained from
the relevant equilibrium fluctuations while the time-dependent properties are computed here in terms of
the equilibrium time-correlation functions (TCF’s). The TCF’s of local density, current, as well as tem-
perature are calculated. The thermal diffusivity and the sound velocity decrease when the temperature is
approaching the critical temperature, thus showing the expected behavior. However, this behavior is
only a nearly critical one, since this study has been performed in a temperature range where the hydro-
dynamic description still appears to be valid. Indeed, good agreement has been found between the equi-
librium fluctuations computed by MD and hydrodynamics. The time scales for the normal and the su-
percritical fluids are quite different: a considerably slower decay of the fluctuation relaxations is ob-
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served in supercritical fluids.

PACS number(s): 05.60.+w, 05.70. —a, 05.40.+j, 64.60.Fr

I. INTRODUCTION

The study of the hydrodynamic behavior of supercriti-
cal pure fluids has fundamental as well as applied motiva-
tions. The fundamental interest lies in the unusual heat
and mass transport near the critical point, which is due
to the divergence of the compressibility and the vanishing
of the heat diffusivity. The transport mechanisms are
dominated by acoustic phenomena as has been shown
both by numerical and asymptotic analyses of one-
dimensional Navier-Stokes equations applied to a van der
Waals fluid [1-3]. Heat transport is strongly enhanced
by thermoacoustic couplings, so that heat propagation is
much faster than it would be, if only diffusion contribut-
ed to it. The experiments, which allow us to study these
phenomena, can only be performed under the microgravi-
ty conditions that prevail in spacecrafts [4—6]; indeed, on
ground, the presence of strong convective instabilities or
density stratifications would hide the transport
phenomenon itself. On the other hand, the study of criti-
cal transport is also linked to space applications since the
fluid (and fuel) storage in the microgravity conditions of
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space flights is usually at temperatures above critical.

The proximity of the critical point [7] is expressed by
the fluid through different effects: First, while approach-
ing the critical point located at number density n=n,
and temperature T=T,, the compressibility of the fluid
becomes large (as a matter of fact, much larger than that
of a perfect gas) and several thermodynamic properties
have unusual values leading, in turn, to a behavior that,
although uncommon, is still consistent with hydrodynam-
ic theory [8]. Very near the critical point, other phenom-
ena might occur that are linked to the divergence of the
correlation length &, becoming much larger than any
wavelength; in this region the hydrodynamic description
itself becomes inadequate [9].

In this paper, we will focus on the study of fluid prop-
erties in the first region: By a supercritical fluid, we un-
derstand, in the remainder of the article, a highly
compressible fluid still obeying the Navier-Stokes hydro-
dynamic equations. Our aim will be to investigate, at a
microscopic scale, the supercritical fluid behavior. In or-
der to do so, we will first limit ourselves to the study of
the equilibrium fluctuations. The dynamic structure fac-
tor, for instance, has already been studied by the molecu-
lar dynamics (MD) technique [10] in different atomic
models, showing the validity of the hydrodynamic
description up to the atomic scale [11]. We will, in the
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present study, extend the technique to the proximity of
the critical point in order to investigate and probe the
fluid behavior. Our rationale will be to compare the
MD-computed fluctuation spectrum with the one gen-
erated from hydrodynamics, given the values of the trans-
port coefficients.

The difficulty of performing simulations of fluid
behavior near a critical point arises both from large fluc-
tuations and slow relaxations. Thus simulations require
large system sizes and long-time trajectories. However,
significant results have already been obtained for static
equilibrium properties; in particular, the liquid-gas coex-
istence curve has been computed for the Lennard-Jones
model [12-14]. Another study also performed in the
two-phase region concerns the temperature dependence
of the liquid-vapor interface simulated with a two-
dimensional (2D) Lennard-Jones model [15]. It is worth
noting that the finite size of the systems used in the
molecular dynamics and Monte Carlo (MC) simulations
results in the fact that the critical point is not well
defined, but, nevertheless, characteristic features of the
critical behavior are obtained [14,16]. In particular, MC
results clearly show the existence of strong density fluc-
tuations with relatively large length scales. Moreover, a
large value of the isothermal compressibility is obtained
near the estimated critical temperature. It is, however,
not easy to obtain an accurate value of the compressibili-
ty derived from the density fluctuations, since this
method of evaluation is strongly size dependent [14].

In this work, the model used to represent a highly
compressible fluid is a two-dimensional system that con-
tains particles interacting via a Lennard-Jones potential.
The specific heats, the isothermal compressibility, as well
as the speed of sound, are determined by an ensemble
average of the relevant thermal fluctuations generated by
MD. The time-dependent properties are investigated
here in terms of the equilibrium time-correlation func-
tions (TCF’s) that, according to the linear response
theory, contain the full information on the near-
equilibrium relaxation. The TCF’s of the local density,
the current, as well as the temperature, are calculated.
The self-diffusion coefficient, the thermal conductivity,
and the bulk and shear viscosity are also computed [17].

Very near the critical point, the large density fluctua-
tions and the correlation length reaching the order of
magnitude of the system would induce unrealistically
heavy computations. In this region the hydrodynamic
description would also be questionable. We have there-
fore restricted ourselves to states sufficiently far from T,
so that sensible averages can be performed. The agree-
ment between the two descriptions, MD and linearized
Navier-Stokes, shows indeed the validity of the hydro-
dynamic equations in the states reached by the simulation
technique. In this sense, we are able to describe the
effects of a high compressibility of the fluid on the dy-
namic properties (rather than get so close to the critical
point that mode coupling effects would become impor-
tant). In a second (forthcoming) paper, we will use the
model to investigate the nonequilibrium behavior of a
highly compressible fluid.

Simulations performed on a fluid far from (7,,n.), a
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“normal” fluid, will allow us to compare typical
behaviors. For instance, the temperature fluctuation re-
laxation, which is usually dominated by the slow entropy
diffusive mode, will, near (T, and n_.), propagate accord-
ing to the fast acoustic modes. We shall relate this
behavior to the fast heat transport observed in experi-
ments.

The outline of the paper is as follows. In Sec. II, we in-
troduce the MD model system as well as the microscopic
definitions of the thermodynamic quantities. The results
of the MD calculations and those obtained from hydro-
dynamic theory are shown and discussed in Sec. III. Fi-
nally, in the conclusion, we relate the observed behavior
to the experimental results and we comment on the per-
spectives offered by the microscopic approach.

II. METHOD

A. Model system

In the MD study, a two-dimensional fluid system of
N =256 particles interacting with the Lennard-Jones (LJ)
potential
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is considered. To simplify the MD calculations, this po-
tential is truncated and shifted with a cutoff radius of
2.5¢0. This simple 2D model enables us to study relative-
ly large wavelengths; to reach comparable values, a
three-dimensional (3D) system would require more than
4000 particles. This 2D model also allows us to perform
long-time trajectories that are, in general, needed to study
hydrodynamic behavior, this is even more so near the
critical point.

In this work, &, 0 and 7=V mo?2/48¢ are chosen as
the energy, length, and time units, respectively. The tem-
perature unit is €/kg; furthermore, the Boltzmann con-
stant kp is set to 1 and the atomic mass is chosen to be
m =48. The time step in the MD runs is taken as 0.032,
which corresponds to 0.01 ps for liquid argon (o =0.3405
nm, €/ky=119.8 K). As explained hereafter we are pri-
marily interested in the temperature dependence of the
model system; therefore MD runs are performed in the
NVT (constant number of particles, volume, and temper-
ature) ensemble, where the temperature is fixed by the
Nosé-Hoover thermostat [18].

The phase diagram of the truncated and shifted 2D-LJ
model fluid has been studied in detail in previous works.
The estimated value of the critical point is given by
T.=0.46 and n,=0.34 [13]. In the present work, three
supercritical states at critical density (n,=0.34) are in-
vestigated. To avoid the extreme fluctuations at the criti-
cal point, we have performed the simulations in a temper-
ature range located in the supercritical region. The
lowest temperature investigated is 77=0.5. The nearly
critical behavior of the physical properties (e.g., the in-
crease of the compressibility) will thus be characterized
as a function of the temperature. Besides the three super-
critical states, a normal fluid state has also been studied.
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This enables us to compare the supercritical fluid with
the better understood normal fluid. The location of the
four states is shown in Fig. 1, where the phase diagram of
the model fluid in the critical region is also displayed.
The simulations made are usually 10° time steps long, ex-
cept for state 4 where shorter trajectories of 250 000 time
steps were already giving a comparable accuracy, this
difference is due, of course, to the proximity of the criti-
cal point.

B. Thermodynamic properties from fluctuations

The equilibrium thermal fluctuations of energy, pres-
sure, and density are computed by MD. The specific heat
per particle at constant volume c,, the isothermal
compressibility «r, as well as (3P /97T), for the model
fluid are obtained from these fluctuations using the fol-
lowing relations [19]:
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where EA; and O are the total and potential energy, respec-
tively, P is the pressure, F(k,t) is the number density
TCF, which will be defined in Sec. II C, and the brackets
{ ) indicate an ensemble average.

From the above quantities, the specific heat per parti-
cle at constant pressure ¢, and the speed of sound ¢, can
be also obtained by using
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C. Dynamic properties in terms of TCF’s

In the MD study, we consider the TCF’s for the local
density F(k,t), the longitudinal current V(k,t), and the
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FIG. 1. Phase diagram of the truncated and shifted 2D
Lennard-Jones fluid (from Smit [13]). The four states investigat-
ed in our simulations are indicated by the squares and the es-
timated value of the critical point [13] by a filled circle.

local temperature T'(k,t). The first two TCF’s can be
calculated straightforwardly by

N e N ik
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There is no thermodynamic prescription that permits
the microscopic definition of the local instantaneous tem-
perature out of equilibrium [20]. Here, we use the tem-
perature definition based on the local equilibrium as-
sumption. The latter is implicitly defined by

de
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where 8 stands for fluctuation and e denotes the energy
density. The partial derivatives are equilibrium deriva-
tives. The microscopic definitions of the instantaneous
local temperature fluctuations will be discussed in detail
in a separate paper.

In k space [fk=(1/V)fe_"‘"f(r)dr], Eq. (9) can be

written as

, (10)

> (109
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with 4 the enthalpy density.
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Based on linearized Navier-Stokes hydrodynamic equations and equilibrium static fluctuations values, the hydro-
dynamic limit (k —0) of the TCF’s is given by the so-called Landau-Placzek formula, which reads [21]

F(k,t) _y—1 -Dk* 1 _pz2 .
— 2l = r — k
F(k,0) v ¢ + e cos(eskt)+b(ksine,kt)] (11)
Vik,t) _ e*rkZ’{csk[cos(cskt)+b(k)sin(cskt)]—2Fk2[sin(cxkt)—b(k)cos(cskt)]} (12)
V(k,0) ¢,k +2Tk2b (k) ’
T(k,t) 1 —Drk% Y—1 | _ru2 k .
— = + —[—D 1
T(k,0) ?/e " e cos(c kt )+ - [T r(y +1)]sin(c kt) | , (13)
[
with states in Fig. 1. The system size selected for almost all
_ the computations corresponds to N =256. The pressure
Y=c/cy (14) " p and the potential energy U have been computed togeth-
- er with the self-diffusion coefficient D. The results are ob-
Dy=MA/nc, , (15) . . . . .
tained with the truncated and shifted potential without
r=1i[(y—1)Dr+7n/mn}, (16) any long-range corrections.
The standard deviation of the density An given in
b(k)=[T+Dp(y —D]k /¢, , (17)  Table I is calculated locally with the block density distri-

and

T(k,t) _ {T(k,t)T(—k,0))
T(k,0) (T(k,00T(—k,0))

The ratio of the specific heats y, the thermal diffusivity
Dy, the sound attenuation coefficient I', as well as the
speed of sound c,, can be evaluated either by fitting the
theoretical solutions [Eqgs. (11)-(13)] to the MD-
generated TCF’s, or by direct MD calculation. In this
work, we have chosen the direct MD calculation.
Indeed, as will be seen in the following, a reasonable
agreement is obtained between the TCF’s calculated by
MD and those predicted by the hydrodynamic theory us-
ing the independently determined parameters. The
thermal conductivity A and the viscosity n=1,+¢, 7, be-
ing the shear viscosity and ¢ the bulk viscosity, are calcu-
lated with the well-known Green-Kubo formulas [22].
The heat capacities cp and ¢, are computed by MD using
relations (2), (3), and (5); then the values of y, Dy, and T
are obtained with relations (14)—(16).

(18)

III. RESULTS AND DISCUSSION
A. Thermodynamics of the simulated states
The thermodynamic properties of the four states inves-

tigated by MD with the 2D LJ model are listed in Table
I. The density and temperature allow one to locate the

bution technique (see Ref. [14]). For this purpose, the 2D
system is divided into 4 X4 subsystems where the number
of particles are recorded and analyzed. As expected for
computations performed at the critical density (states
1-3), the pressure increases with the temperature
whereas the energy decreases. The self-diffusion
coefficient D is calculated by integrating the velocity-
autocorrelation (VAC) function using the Green-Kubo
formula [22],

D=1 [ "dt(v,(1)v,(0) . 19

The VAC is integrated in a time range n_=1007 for the
supercritical states and n_.=257 for the normal fluid.
The integration is limited here by the acoustic recurrence
time 7, (see Table III) as will be discussed later. Howev-
er, the VAC’s decay to almost, though not exactly, zero
within the integrated time, as shown in Fig. 2. The
values obtained for D at critical density are comparable
to the Enskog values for hard disks at the same density
and temperatures. There does not seem to be any pecu-
liarity in the values for the diffusion coefficient, although
the time scale over which the velocity correlations remain
noticeable is much larger than in liquids. The same holds
for the heat conductivity Green-Kubo integrand, which
is also displayed in Fig. 2; although it remains different
from zero for a relatively long time, this can be account-
ed for by the low critical density. The time dependence
seems otherwise similar to the liquid behavior, in particu-

TABLE I. Thermodynamic properties of the simulated states.

State T(e/kp) n(o~?) P(g/c?) U/N(¢g) L(o) An(o™?) D(a?/7)
1 0.70 0.34 0.155 —1.08 27.44 0.09 0.076
2 0.60 0.34 0.098 —1.19 27.44 0.11 0.067
3 0.50 0.34 0.042 —1.45 27.44 0.16 0.054
4 0.60 0.70 0.524 —2.04 19.12 0.07 0.013
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FIG. 2. Normalized time-correlation functions of velocity
and heat current for n =0.34 and T'=0.6 (state 2).

lar the decay due to the transfer of potential energy at
short times and transfer of kinetic energy at long times.

B. Density fluctuations and compressibility

The standard deviation of the density An calculated for
the three supercritical states increases significantly when
the temperature becomes closer to the critical value, thus
showing a nearly critical behavior of the density fluctua-
tions. The evolution of the density fluctuation amplitude
can be seen more clearly in Fig. 3 where the density prob-
ability distribution P (n) is plotted. This distribution has
been computed with the block density distribution tech-
nique used for the calculation of An. P(n) is normalized
in such a way that f P(n)dn=1. Here, it is clearly visi-
ble that the density tends to have a wider distribution as
the critical point is approached. In Fig. 3, we display a
snapshot of a large system containing 1024 particles and
corresponding to state 2. From the snapshot, one can
directly observe the enhanced density fluctuations. Rath-
er than the almost homogeneous distributions expected in
the normal liquids or fluids, fully nonhomogeneous distri-
butions of the particles are observed for all the three su-
percritical states studied in this work.

According to the standard fluctuation theory, the den-
sity fluctuation is related to the isothermal compressibili-

ty Kp:

s_ﬁ..,r..,#..,.,.dé —

[ T=0.7 30kt ]
g 5 !'s:,ﬁ_'i.g\_l_':.;g" a .
. r I ST SO L By
3 1o LA e ]
2 [ 1043 e A AT 1
é 4 [ e : x W ; -..!'Z _-
S 0pie eyl pgt S |
g 3r e P R
3 i 30 -10 10 30]
2 oof 4ugs ;
g L ]
=2 L . i
e 1L R ]
Ay i / \ i

: B ,’ . .“. .

0 /,, P P S B
0 0.2 0.4 0.6 0.8 1
Density (672)

FIG. 3. Density probability distribution for the three super-
critical states. The inset is a snapshot showing the instantane-
ous positions of the particles in state 2 (n =0.34 and T'=0.6);
the coordinates of the particles are given in system units (o).

172
An _

n

nkBTKT
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Thus, the increase of the density fluctuation near the
critical point indicates also a high compressibility of the
fluid. Let us recall, however, that the compressibility ob-
tained from the density fluctuation of the subsystems
based on Eq. (20) is not very accurate because of the
system-size effects, as discussed in Ref. [14].

C. Thermodynamic parameters

The heat capacity at constant volume, the isothermal
compressibility, and (3P /3T'), have been computed with
Egs. (2)—(4). The thermal conductivity and the viscosity
are calculated by integrating the relevant correlation
functions [23]. The resulting values are listed in Table II.

The properties of the supercritical fluids differ
significantly from those of the normal fluid; this is notice-
able in particular for the heat capacity and the compres-
sibility. While the normal fluid exhibits a liquidlike
compressibility, a much higher compressibility is found
for the supercritical fluids. Note that the value of
here is many times larger than that for an ideal gas,

TABLE II. MD results: specific heat at constant volume, isothermal compressibility, (0P /0T )y,

thermal conductivity, and viscosity.

State c. kg nky Tk (kgn) Y (3P /3T)y Me/7T) n(er/o?)
1 1.85 1.84 1.81 0.29 6.2
2 2.75 3.25 1.79 0.35 8.1
3 4.66 12.7 1.65 0.39 12
4 1.55 0.13 4.90 0.71 30
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TABLE III. Thermodynamic parameters derived from the MD results listed in Table II.

State ¢, /kg v Dy(c*/7) 7p(1037) I'o?/7) c,(o/T) T(a/T)
1 7.9 4.26 0.11 6.8 0.37 0.18 152
2 13 4.88 0.08 9.1 0.40 0.14 196
3 39 8.36 0.03 25 0.49 0.08 343
4 4.67 3.01 0.22 1.7 0.67 0.54 354

where nkyTkr=1. On the other hand, the relative im-
portance of the two contributions (potential- and kinetic-
energy fluctuations) to the specific heat at constant
volume is also varying. While the kinetic part of c,,
which is equal to 1, is more important for the normal
fluid, the value of ¢, becomes much larger than 1 for the
supercritical fluids, thus showing that the potential-
energy contribution becomes dominant as the critical
point is approached.

The thermodynamic parameters derived from Egs. (5),
(6), and (14)—(16), using the MD results given in Table II
are shown in Table III. Here, an increase of ¢, and v, as
well as a decrease D, are observed as the critical point is
approached. All these changes are directly related with
the enhanced compressibility, as can be seen from Egs. (5)
and (15). In addition to the strong decrease of the
thermal diffusivity, a weak slowing down of the speed of
sound is also observed for the near critical states. In
comparison with the large variations of ¢, and D near
the critical point, the values of the specific heat and of
the thermal diffusivity obtained for the normal fluid state
are closer to the standard ones. Note that the values of
Dy and T for state 4 are rather comparable to the results
that can be expected for normal fluids. The values of the
acoustic 7, (=L /c,) and thermal 7, (=L2/Dy) re-
currence times, calculated for N =256, have also been in-
cluded in Table III.

D. Hydrodynamic TCF’s

The TCF’s are calculated mainly for MD systems with
N =256 particles. To justify the reliability of this system,
especially in view of the system-size effects, the MD sys-
tems with N=256 and 1024 are compared for state 3.
The longest density correlation length is observed for this
state and the strongest system-size dependence can thus
be expected among the states studied here. The TCF’s of
local density and longitudinal current density obtained
from the MD simulations with two system sizes are
displayed in Fig. 4. These TCF’s are calculated for the
smallest k possible for N =256. Up to a time comparable
with the recurrence time of the smallest system, the re-
sults obtained for the two cases exhibit only a slight
difference, which is comparable with the statistical error.
In the following, we will see that the MD system with
N =256 is indeed sufficient to produce results accurate
enough for the present research purpose.

In Fig. 5, we show the typical k dependence of the den-
sity and current TCF’s, which are calculated for three
different k values. It is clearly visible here that the TCF’s
decay more slowly for modes with smaller k or longer

wavelength, as expected for TCF’s of conserved quanti-
ties. Since we are more interested in the hydrodynamic
limit of the thermal relaxations, we will confine ourselves,
in the following discussion, to the TCF’s with the small-
est possible k.

In Fig. 6, we compare the TCF’s for the density, the
current, and the temperature obtained by direct MD cal-
culations and from the hydrodynamic theory. The pa-
rameters listed in Table III are used to calculate the
TCF’s with Egs. (11)-(13). A surprisingly good agree-
ment between the results of MD and the hydrodynamic
theory is obtained for all three TCF’s. We note that the
agreement can still be slightly improved if the TCF’s gen-
erated with larger MD systems are used, as indicated by
Fig. 4. This result confirms the usefulness of the hydro-
dynamic theory even near the critical point.

The good agreement with the hydrodynamic theory al-
lows us to discuss the TCF’s with the help of the analyti-
cal solutions given in Sec. II, Eqgs. (11)-(13). As can be
seen from these equations, the hydrodynamic relaxations
of the density and the temperature are governed by two
terms corresponding to the thermal diffusion and the
acoustic modes, respectively. While the former term is
purely exponential, the latter term is a product of the ex-
ponential sound attenuation and of the harmonic acoustic
oscillation. Furthermore, the relative contributions of
these two terms to the TCF’s are weighted by the factors
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FIG. 4. System-size dependence of the normalized time-
correlation functions for local density F(k,?) and longitudinal
current V(k,t). The results are plotted for state 3 (n=0.34,
T=0.5) and a value of k =0.229.
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functions for local density F(k,t) and longitudinal current
V(k,t). The results calculated for three values of k:
k=2mw/L,(2V27)/L, 4w /L are plotted for state 3 (n=0.34,
T=0.7).

containing the ratio of the specific heats y, which play
completely different roles for the density and the temper-
ature TCF’s. On the other hand, the TCF of the longitu-
dinal current V(k,t), being the double derivative of
F(k,t), is determined mainly by the acoustic mode, as can
be seen in Eq. (12). Moreover, V(k,t) becomes identical
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FIG. 6. Comparison of the normalized time-correlation func-
tions for local density F(k,t), longitudinal current V(k,t), and
local temperature T'(k,t), calculated in two different ways: (i)
TCF computed by MD; (ii) TCF calculated with relations
(11)—-(13) derived from hydrodynamic theory. The results are
plotted for state 3 (n=0.34, T=0.5) with the value of
k=0.229.
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to the acoustic term of F(k,t) and T(k,?) in the hydro-
dynamic limit (k —0).

To compare the thermal relaxations in supercritical
and normal fluids, the TCF’s of the density, longitudinal
current density, and local temperature of states 4 and 2
are shown in Figs. 7(a) and 7(b), respectively. Here, the
second, instead of the usual first smallest k, is taken for
state 2, to allow for a direct comparison of the TCF’s
with similar k. Similarly to the VAC computation dis-
cussed earlier, all the TCF’s in Fig. 7 are calculated in a
time range t=1007 for state 2 and t=257 for state 4.
Since the correlation time studied is not far from the
acoustic recurrence time L /c; (see Table III), the TCF’s
at longer times are not explored in the present MD study.

The effects of the acoustic mode are well displayed in
the graph of V(k,t). First, the difference of the speed of
sound for the two fluid states is clearly exhibited by the
different time scales in Figs. 7(a) and 7(b). In fact, the
time ¢,,;,, where V(k,t) has its minimum, is related to the
speed of sound by ¢, = /kc; in the small k limit, ac-
cording to Eq. (12). The speeds of sound thus estimated
from the MD curves of ¥V(k,t) in Figs. 4-7 really appear
to be in accordance with the results based on thermal
fluctuations (see Table III). Second, due to the large
sound attenuation related to the small value of the speed
of sound, the amplitude of the acoustic oscillation in the
V(k,t) curve is strongly reduced in the supercritical fluid.

While the TCF’s of the current already reach the zero
point and the minimum within half of the time span stud-
ied, the TCF’s of the density decay only to about 50% in
Figs. 7(a) and 7(b). The slow decay of F(k,t) relative to
V(k,t) is clearly due to the additional thermal diffusion
term, according to Egs. (11) and (12). Although the den-
sity TCF’s have both a slow decay, a difference can still
be observed between the decay rates of the normal and
the supercritical states. The slightly oscillatory relaxa-
tion of F(k,t) for state 4 apparently comes from the
acoustic contribution, whose typical time scale is compa-
rable with that of the thermal diffusion, as is usually the
case for normal fluids. However, the rather monotonous
decay of the density relaxation in Fig. 7(b) indicates the
domination of the thermal diffusion for the supercritical
fluid. Furthermore, the acoustic contribution is reduced
not only by the long-lived thermal diffusion, but also by
the increase of v, as predicted by Eq. (11).

A difference is also observed between the behaviors of
the temperature TCF’s for the normal and supercritical
fluids. As shown in Fig. 7(a), a rather strong, oscillatory
correlation for the temperature TCF remains even after
the first minimum for state 4. This indicates that compa-
rable contributions from the thermal diffusion and sound
modes are given to the temperature correlation in normal
fluids, just as it is in the case for F(k,t) discussed earlier.
On the other hand, T'(k,t) for the supercritical fluid de-
cays to less than 10% within the much faster acoustic
time scale. The absence of the thermal-diffusion-related
critical slowing down in the temperature relaxation in
Fig. 7(b) is obviously caused by the small value of the pre-
factor 1/y for the diffusion term in Eq. (13). Further-
more, the acoustic oscillation typical for the TCF’s in
normal fluids is also much reduced here for T(k,t).
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IV. CONCLUSIONS

Let us sum up the main points that come out of this
study. First of all, the fluid that we have simulated seems
to be well described by the hydrodynamic equations.
This might seem to be a trivial statement since hydro-
dynamics has been successfully used to model the equilib-
rium fluctuations in liquids for wavelengths larger than
the molecular diameter. However, this conclusion is not
really obvious since it implies that the correlation length,
which appears near the critical point, is comparable to,
although always smaller than the system size. We are
able to draw this conclusion from the comparison made
between the time dependence of the MD-computed
density-density, current-current, and temperature-
temperature correlation functions, on the one hand, and
the Landau-Placzek form of these same time-correlation
functions on the other hand. We stress that the last ex-
pressions [see Eqgs. (11)-(13)] are computed with ther-
modynamic parameter values that are independently cal-
culated.

The second point we would like to underline is the fol-
lowing: the values of the thermodynamic parameters that
characterize the static and dynamic fluid behavior are,
for the studied supercritical states, anticipating the criti-
cal point. As can be seen from the tables in the text, the
specific heat at constant pressure and the compressibility
have large values compared to what is usually computed
in a liquid, for example. This increase becomes very im-
portant as we approach the critical region. As a conse-
quence, the thermal diffusivity has a low value, giving rise
to a quite measurable slowing down for the relaxation of
the entropy mode. The effect is less pronounced for the
speed of sound, which decreases and becomes barely no-
ticeable for the sound adsorption coefficient, which
remains nearly unchanged. This is consistent with what
can be expected as general fluid behavior from experi-
mental results.

Since divergences can only be expected in the thermo-
dynamic limit, it is extremely difficult to predict the

Time (system units)

effects linked to criticality in systems made of a few hun-
dred particles. All the results that we have obtained seem
consistent with the following interpretation: the models
of a few hundred particles are able, in the supercritical
region, to display an unusual behavior that is understood
as that of a highly compressible fluid. On the scales we
investigated. Navier-Stokes hydrodynamics is still a valid
description. In some sense, our results extend the studies
made by Rovere, Heermann, and Binder [14] to the dy-
namic properties. As they did, we have been obliged to
work with two-dimensional systems to reduce the compu-
tational cost of the simulations.

An important motivation for the present work is the
characterization of fluid behavior near criticality. In this
respect, let us stress the very unusual behavior of the
temperature-temperature TCF in the supercritical region.
Most of the temperature relaxation in Fig. 7(b) is driven
by the isoentropic acoustic mode, as can be seen from the
comparison with the current-current TCF, which is pure-
ly acoustic, and with the density-density TCF, which is
mostly isobaric and (slowed-down) diffusive. This is in
contrast with the usual liquidlike behavior where the
temperature is diffusive, whereas the density is driven by
sound waves. One should stress that the so-called “nor-
mal” state that we have studied for comparison does not
display a very different behavior from the critical one;
this can be understood since its temperature is still super-
critical and some of the thermodynamic parameters will
show unusual values (y, for example, is around 3). Had
we chosen a liquid state near the triple point, the
difference would have been more striking, but the com-
parison also would have been more difficult to establish.

This last point is important in the perspective of using
nonequilibrium MD in order to simulate directly the
transport processes in highly compressible fluids. The
present study, in this respect, produces evidence of the
ability of the MD technique to reproduce the physical
mechanisms taking place near the critical point in the re-
gion where the hydrodynamic description is still valid.
Work in the direction of a direct modeling is in progress
and will be reported in the future.
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